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Abstract 

Primary production dynamics are strongly associated with vertical density profiles, which dictate the depth of 

stratification and mixed layers. Climate change and artificial structures (e.g. windfarms) are likely to modify the strength 10 

of stratification and vertical distribution of nutrient fluxes, especially in shelf seas where fine scale processes are important 

drivers, affecting the vertical distribution of phytoplankton. To understand the effect of physical changes on primary 

production, identifying the linkage between density and phytoplankton profiles is essential. Here, the ecological relevance 

of eight density layers (DLs) obtained by multiple methods that define three different portions of the pycnocline (above, 

centre, below) was evaluated to identify a valuable proxy for subsurface Chlorophyll-a (Chl-a mg m-3) concentrations. 15 

The associations of subsurface Chl-a with surface and deep mixing were investigated by hypothesizing the occurrence at 

the same depth of any DL and the maximum Chl-a layer (DMC) using Spearman correlation, linear regression, and a 

Major Axis analysis. Out of 1237 observations of the water column exhibiting a pycnocline, 78% reported DMCs above 

the bottom mixed layer depth (BMLD). This suggests that the BMLD  is a boundary trapping Chl-a in shallow waters (≤ 

120 m). BMLD constantly described Chl-a vertical distribution despite surface mixing indicators, suggesting a significant 20 

contribution of deep mixing processes in supporting subsurface production under specific conditions (e.g. prolonged 

stratification, tidal cycle, and bathymetry). Using BMLD for defining subsurface Chl-a could be a valuable tool for 

understanding the spatiotemporal variability of Chl-a in shelf seas, representing a potential variable for ecological 

assessments.  
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1. Introduction 

As we begin to manage our oceans and coastal seas for more complex simultaneous uses, such as renewable energy 

developments, fishing and marine protected areas, it is becoming increasingly important understanding details of primary 

productivity at fine spatial scales. The temporal and sub-mesoscale (1 to 100 km) spatial patchiness of resources in coastal 30 

seas (Goebel et al., 2014; Martin, 2003) indicates a complex interplay of localized factors – such as circulation, river 

plumes, mixing and stratification – that seasonally characterize the different hydrodynamic regimes of the marine 

environment (Leeuwen et al., 2015; Cullen, 2015; Lévy et al., 2015). Besides very shallow waters, the vast majority of 

phytoplankton generally grows in stratified waters, where the pycnocline acts as a barrier against the mixing of the whole 

water column. The balance between stratification and mixing is determinant for phytoplankton flourishing in the euphotic 35 

zone, which, in shelf seas, fluctuates in time and space by the modulation of daily and biweekly tidal cycles (Klymak et 

al., 2008). Turbulent mixing of the water column requires energy sources from either the surface (e.g. wind stress, Ekman 

pump due to wind curl) or the deep waters (e.g. upwelling, eddy diffusion, tidal currents). Climate change is introducing 

variations in these physical factors, and therefore changes are expected in the overall mixing budget of our seas. 

Anomalies in circulation slow-down, sea-level rise, bottom and surface temperature have largely been described as driven 40 

by climate change in the last two decades (e.g. Bryden et al., 2005; Taboada and Anadón, 2012). However, their effects 

on the biological effects, especially those from the bottom-up regulation of primary production, are still partially 

understood (Lozier et al., 2011; Somavilla et al., 2017). 

1.1 Subsurface chlorophyll-a maxima layers (SCMLs) 

Many of the uncertainties of climate change impacts on primary production come from the difficulties in sampling the 45 

community composition and the total abundance throughout the whole water column. The vertical distribution of 

phytoplankton is one of the most relevant and challenging variables to sample in the marine environment. Contrary to the 

detection of surface blooms by satellite sensors, subsurface chlorophyll-a maxima layers (SCMLs) are often more difficult 

to describe and measure. SCMLs represent significant features in plankton systems (Cullen, 2015), they define where 

most of the bottom-up processes take place and can encompass more than 50% of the entire water column production 50 

(Weston et al., 2005; Takahashi and Hori, 1984). In the North Sea, the summertime (May-August) subsurface production 

contributes to the annual production of up to 20-50% and sustain the food chain in continental shelf waters during 

prolonged stratified conditions (Hickman et al., 2012; Richardson and Pedersen, 1998; Weston et al., 2005). Several 

studies linked the vertical distribution of maximum chlorophyll-a (Chl-a) to deep mixing processes (e.g. Brown et al., 

2015; Richardson and Pedersen, 1998; Sharples et al., 2006; Zhao et al., 2019b) and identified the occurrence of deep 55 

Chl-a assemblages in the proximity of the pycnocline in shelf seas (e.g. Costa et al., 2020; Durán-Campos et al., 2019; 

Ross and Sharples, 2007; Sharples et al., 2001). Deep turbulent processes and stratification are notably linked in shelf 

seas, where the stratification is maintained by tidal cycles mixing the water column through horizontal circulation 

(Glorioso and Simpson, 1994; Loder et al., 1992; Sharples et al., 2006, 2001; Simpson et al., 1980; Zhao et al., 2019b). 

Maxima Chl-a have been identified at the base of the pycnocline in regions of strong tidal mixing at Georges Bank in 60 

August (Holligan et al., 1984) and within the western English Channel (Sharples et al., 2001). However, despite the clear 

linkage between SCMLs and stratified waters, the effects of climate change on ocean productivity has mainly been 

described in relation to the mixing processes above the pycnocline (within the upper mixed layer) (Somavilla et al., 2017), 

omitting the effects of deeper layer processes. In fact, studies of shelf waters suggest fast variations of the water column 

due to both surface and deep mixing processes, since the interplay of marine components occur within a thinner layer 65 

than in deep oceanic locations (Durski et al., 2004). The exclusive investigation of the surface mixed layer is likely to 
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bias the investigation of climate change impacts on primary production (abundance and distribution) in shallow sea/shelf 

regions and needs to be investigated further.  

1.2 Mixed layer depth (MLD) and pycnocline characteristics 

MLD has been largely considered as a central variable for understanding phytoplankton dynamics (Sverdrup, 1953), 70 

especially in oceanic sites, where several studies have investigated the ecological relevance of MLD on Chl-a vertical 

distribution (Behrenfeld, 2010; Carranza et al., 2018; Diehl, 2002; Diehl et al., 2002; Gradone et al., 2020), phytoplankton 

bloom events (Behrenfeld, 2010; Chiswell, 2011; D’Ortenzio et al., 2014; Prend et al., 2019; Ryan-Keogh and Thomalla, 

2020, Sverdrup, 1953), and the effects of climate change (Somavilla et al., 2017). The nutricline exhibits positive 

correlations with the upper mixed layer depth (Ducklow et al., 2007; Gradone et al., 2020; Holligan et al., 1984; Prézelin 75 

et al., 2000, 2004; Ryan-Keogh and Thomalla, 2020; Yentsch, 1974, 1980), and it has been generally associated with 

surface spring blooms or windstorm events (e.g. Banse, 1987; Carranza et al., 2018; Carvalho et al., 2017; Lande and 

Wood, 1987; Therriault et al., 1978). However, the effect of climate change on MLD and primary production is still an 

unsolved question (Lozier et al., 2011; Somavilla et al., 2017). The need for a much more detailed understanding of the 

linkage between primary production, pycnocline characteristics and deeper turbulent processes is therefore a key area of 80 

research, especially in highly productive but spatially heterogeneous areas such as shelf waters and shallow seas. 

The methods for identifying MLDs vary among marine environments, hydrodynamic regimes, or the spatial resolution of 

vertical profiles (Courtois et al., 2017; Lorbacher et al., 2006), because making use of a single method is difficult for 

spatiotemporally heterogeneous regions. MLDs are typically defined as the depth at which the density gradient exceeds 

a specific value (threshold) (e.g. Kara et al., 2000), however this method presents issues in specific hydrodynamic 85 

conditions, such as over estimating MLD in regions with deep convection (e.g. subpolar oceans) (Courtois et al., 2017), 

or misidentifying water columns with a newly established shallow MLD over previous periods of stratification (Somavilla 

et al., 2017). Several sensitivity tests and comparisons have been conducted in oceanic waters (e.g. Carvalho et al., 2017; 

Courtois et al., 2017; González-Pola et al., 2007; Holte and Talley, 2009), however, there are no  standard methods of 

investigation that adapts MLD’s identification in shelf waters.  90 

1.3 A new way forward: the base of the pycnocline (BMLD) as an ecological indicator of the vertical 

distribution of maxima Chl-a (DMC) in shelf waters 

In this study, we proposed the adaptation of existing methods into a new algorithm able to cope with different vertical 

distributions of the density (therefore being able to deal with split pycnoclines and unusual shapes) to characterize the 

heterogeneity of coastal/shelf/shallow waters and identify the depth between the pycnocline and i) the surface mixed layer 95 

depth (commonly known as “MLD”, here renamed as above mixed layer depth, AMLD) and ii) the bottom mixed layer 

depth (BMLD). The method is validated for a region with 14 years of repeated surveys that covers a mosaic of habitats 

types in waters depths ranging from 20 to 120 m (north-western North Sea) driven by seasonal stratification, permanently 

mixed waters, regions of freshwater inputs and strong tidal mixing (Leeuwen et al., 2015). We investigated the ecological 

relevance of both layers (AMLD and BMLD) in relation to the vertical distribution and abundance of Chl-a, and we 100 

compared the performance of these two proposed density layers to some of the other methods used in the literature. This 

new level of understanding is being developed in order to help the identification of key linkages between the physical 

environment and primary production at finer spatial scales (≤ 1 km), which can be ecologically relevant for pressing 

issues in marine spatial management (e.g. seabed leasing for wind farms, locations of MPAs) and spatially explicit climate 

change assessments. 105 
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2. Methods 

Vertical samples of density and Chl-a (see Sect. 2.1) were used to characterize the relationship between subsurface Chl-

a (described as abundance and vertical distribution, see Sect. 2.2) and stratification features (see Sect. 2.3 and 2.4) in shelf 

waters < 120 m. The most frequent methods used to identify vertical characteristics of density profiles (density layers – 

DLs) (see Sect. 2.3) were compared to the proposed algorithm estimating the above and below limits of the pycnocline 110 

(AMLD and BMLD in Fig. 2). This algorithm is able to cope with density profiles having instability, or the pycnocline 

fractured in sections (see Sect. 2.4). Here, a new method identifying BMLD is proposed and its ecological application 

(together with other six DLs) is evaluated by comparing the vertical distribution of subsurface Chl-a during spring and 

summer (April-August) (see Sect. 2.5).  

2.1 Physical and biological oceanographic samples 115 

In situ summertime measurements of temperature, salinity, and fluorescence (a proxy of Chl-a abundance) were collected 

from a towed, undulating, CTD and a vertical CTD  in the North Sea off the East coast of Scotland, UK, within the Firth 

of Forth (FoF) and Tay region for over 14 years (Fig. 1).  A total of 426 profiles were gathered from 12 oceanographic 

campaigns carried out by Marine Scotland Science on board of the fisheries research vessels Scotia and Alba na Mara 

(www.gov.scot/marine-and-fisheries). The data set comprises temperature, conductivity, and fluorescence measurements 120 

from the sea surface to the seabed (vertical resolution equals to 1 decibar) at a number of fixed stations sites from 2000 

to 2014. Water samples were collected during each cast for calibration of the in situ sensor data. Temperature and 

conductivity measurements were quality controlled using the standard Marine Scotland Science editing procedure. The 

undulating CTD sampled the water column in June 2003 and July 2014 with a continuous vertical and horizontal 

oscillation of the instrument throughout the water column from 2 to 5 m below the sea surface to 5 m from the seabed. 125 

Data were sampled at 1 second intervals, resulting in a vertical resolution comprising between 0.5 and 1 m, in water 

depths from 25 m to 115 m. More information about the oceanographic cruise in June 2003 are described in Scott et al. 

(2010), and the same method was used in July 2014. The processing of undulating CTD enabled to get 847 single profiles 

of the water columns. Overall, 1273 profiles from both types of sampling were extracted from April to August (April=3, 

May=51, June=1115, July=66, August=38). In situ conductivity were converted first in Practical Salinity (SP), then into 130 

Absolute Salinity (SA), and in situ temperature was converted into Conservative temperature (Θ) to calculate density (𝜌) 

(gsw_rho function), using the TEOS-10 toolboxes (www.teos-10.org) within the gsw v1.0-5 package in R v3.6.3 (R Core 

Team, 2018).  

 

2.1.1 Standardized vertical sampling for density and Chl-a 135 

Since the proposed algorithm (described in Sect. 2.3) works with profiles at high vertical resolution (samples’ distance is 

1 m), the in situ casts were required to be standardized throughout the water column. Density (𝜌) and Chl-a observations 

taken every 0.5 to 1 m were converted into measurements over regular depth intervals by smoothing and interpolating. 

This was achieved by fitting a generalized additive model (GAM) (Hastie and Tibshirani, 1990) using an adaptive spline 

with 𝜌, or Chl-a, as a function of depth. The smoothing basis (knots) were selected in a range from 75% to 90% of the 140 

number of observations occurring within each profile. The obtained smooth function for each profile was used to predict 

𝜌 and Chl-a at regular 1 m depth intervals. In order to maintain the same shape and values in each profile, the fitted curves 

at 1 m interval were visually checked by plotting the estimated and real profiles to visually identify possible errors. 15% 

of the shapes (n=89) were manually corrected by changing the number of knots in the GAM. The pre-processing analysis 

resulted in advantageously eliminating multiple sampling at the same depth that would have affected the selection of 145 
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density layers’ depths and maxima Chl-a, especially in transects with undulating CTD. The analyses were run in R v3.6.3 

(R Core Team, 2018) using the mgcv v1.8-33 package. 

 

Figure 1: Study area with the in situ surveys measured by an undulating CTD (orange dots) and a vertical CTD (blue 

dots). Land (green) and bathymetry (grey colour ramp) are pictured (ESRI 2020; EMODnet 2018) 150 

2.2 Subsurface Chlorophyll-a parameters  

The depth of maximum Chl-a (DMC) was defined as the deepest maximum inflection point in the Chl-a profile 

standardized at 1 m sampling frequency (Carvalho et al., 2017; Zhao et al., 2019b), by using the adapted Chu and Fan 

(2011) method to measure the real angle instead of the tangent of φ (Eq. (1) and see details in Sect. 2.4). The automated 

identification of DMC was checked manually with a visual inspection of each profile. The total amount of Chl-a were 155 

measured using trapezoidal integration (Walsby, 1997) throughout the water column (depth-integrated Chl-a) in R v3.6.3 

(R Core Team, 2018).  

The vertical distribution of Chl-a was classified into six most frequent vertical shapes according to the literature (Lavigne 

et al., 2015; Mignot et al., 2011; Uitz et al., 2006; Zhao et al., 2019a), using terminology adopted from Mignot et al., 2011 

and Zhao et al., 2019. The profile was split in two sublayers, one above and one below the depth of maximum Chl-a 160 

(DMC), upper and lower sublayers (Fig. 2a grey solid line), and three equal sections were used to divide the difference 

between the minimum and maximum Chl-a values into three equal sections (Fig. 2a red dashed lines). The identification 

of the shapes was performed visually with the help of an automatic measuring of the ratio of observations in the three 

vertical sections within the upper and lower sublayers (Fig. 2). The few profiles with unclear subdivisions, or very 

different shapes, were excluded from the dataset (which only represented 2% of the data).  165 

First, the gaussian shapes, which were not determined by the ratio of observations within each section, have been pulled 

from the dataset and gathered into two shapes, the “Narrow-SCM” and “Wide-SCM”, since the profiles exhibited two 

main widths of standard deviations of Chl-a from DMC. The Narrow-SCM shape is defined by the decrease of Chl-a from 

DMC within a limited range of depths (3-10 m) (Fig. 2a), while Wide-SCM shape is characterized by the equal decrease 
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of Chl-a within a wide range of depths above and below DMC, whose gaussian curvature often covers the whole water 170 

column (Fig. 2b). The “SCM-HCU” shape exhibits a high ratio of Chl-a in the first lower and second upper sections (Fig. 

2c), while the “SCM-HCL” shape is characterized by a high ratio in the first upper and second lower sections (Fig. 2d). 

The “HCL” and “HCU” shapes are defined by the section with the highest ratio of Chl-a in the lower sublayer: HCL is 

characterized by most of the observations within the third section (Fig. 2e), while the HCU exhibits a high number of 

observations within the first section (Fig. 2f).  175 

 

Figure 2: The eight density layers (DLs) are reported for a generic density profile (on the left), together with an 

example for each of the six (plots a-f) identified Chl-a shapes (on the right). On the density profile, the curly brackets 

define the halfway depth (HPD) between AMLD’s indicators (AMLD0.1, AMLD0.2, AMLD) and BMLD. The Chl-a 

shapes are split into the upper and lower sublayers at the DMC (horizontal solid grey line) (a). The vertical lines 180 

indicate the limits of sections 1, 2 and 3 (dashed red lines) (a) that were used to identify the type of shape. The grey 

shaded squares represent the sections with the highest ratio of Chl-a determining SCM-HCU and SCM-HCL, HCL and 

HCU. 

Table 1: Table with the abbreviations used in the paper. 

Abbreviation Description 

SCML Subsurface Chlorophyll-a maximum Layer 

Chl-a Chlorophyll-a (mg m-3)  

DMC Depth of maximum Chlorophyll-a (m) 

DL General abbreviation for a density layer (e.g. AMLD, BMLD, HPD, or Max N2) (m) 

MLD General expression for Mixed layer depth (m) 

AMLD Above mixed layer depth, or starting point of the pycnocline (m) 

BMLD Below mixed layer depth, or ending point of the pycnocline (m) 

HPD Halfway pycnocline depth, or centre of the pycnocline (m) 
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Max N2 Maximum water buoyancy frequency (N2) (m) 

 185 

2.3 Common methods identifying Density Layers (DLs) 

among the methods used to detect density layers in coastal and oceanic waters, three approaches were selected to define 

mixing and buoyancy features in the sampled profiles.  

The AMLDs are typically defined as MLD in the literature and represent the depth at which the density gradient exceeds 

a specific value (threshold method) (e.g. Kara et al., 2000). The threshold is typically selected among a range of values 190 

previously tested in the literature (from 0.0025 to 0.125 kg m-3) (summarized in Holte and Talley, 2009; Lorbacher et al., 

2006; Montégut et al., 2004) and measured as the difference (∆𝜌𝑧 = |𝜌𝑧 − 𝜌𝑟𝑒𝑓|) between a certain sampling depth (z) 

and a reference density value (𝜌𝑟𝑒𝑓), which can be the density at the surface, 10 m depth, or a consecutive point (e.g. z+1). 

In this study, two density gradients (0.01 and 0.02 kg m-3) have been measured as the difference between two consecutive 

points in the profile (∆𝜌𝑧 = | 𝜌𝑧 −  𝜌𝑧+1|) and named as AMLD0.01 and  AMLD0.02. 195 

Since previous studies identified DMCs in the proximity of the centre of the pycnocline (HPD), we investigated the 

relationship between DMCs and three different HPDs measured as the halfway depth between the base of the pycnocline 

(BMLD, see Sect. 2.4) and AMLD0.01, AMLD0.02 and adjusted AMLD (the last described in Sect. 2.4), and named HPD0.01-

BMLD, HPD0.02-BMLD, and HPDAMLD-BMLD (Fig. 2). 

Moreover, the association of maximum buoyancy frequency squared (Max N2) with DMC and Chl-a abundance has been 200 

investigated since several studies reported positive correlation at oceanic (e.g. Martin et al., 2010; Schofield et al., 2015; 

Carvalho et al., 2017; Courtois et al., 2017; Baetge et al., 2020) and shelf waters (Lips et al., 2010; Zhang et al., 2016). 

For each profile, the depth of Max N2 has been selected from N2 profiles (Fig. 2) computed by gsw_Nsquared function 

(gsw v1.0-5 package) in R v3.6.3 (R Core Team, 2018), which is based on absolute salinity and conservative temperature 

with respect to pressure following the most recent version of the Gibbs equation of state for seawater in TEOS-10 systems 205 

(Intergovernmental Oceanographic Commission, 2010). The magnitude of N2 quantifies the stability of the water column 

and pinpoints the stratified layers where the energy required to exchange water parcels in the vertical direction is 

maximum (Boehrer and Schultze, 2009).  

2.4 AMLD and BMLD detection 

Theoretically, the layers between the pycnocline and a mixed vertical region above and below the pycnocline are depths 210 

showing a large change in the density gradient. The surface mixed layer depth (AMLD) and the mixed layer depth below 

the pycnocline (BMLD) are both transient layers from a mixed to a stratified vertical region occurring at the beginning 

and end of the pycnocline. The threshold methods (see Sect. 2.3) delineate an AMLD’s identification based on the 

principle that the mixed layer at the surface is characterized by a variance of ∆𝜌 close to zero. They assume that the 

pycnocline is the portion of the water column with a large density gradient ∆𝜌 that separates two portions of mixed waters 215 

(above and below it) exhibiting a low and similar ∆𝜌. These assumptions may not always hold, and we found that 

identification failure can occur when the upper mixed layer is heterogeneous, with nested sub-structures such as small re-

stratification at the surface followed by a small mixed layer before the pycnocline (Fig. A1e in Appendix A), or when the 

pycnocline is fractured in chunks (Fig. A1f in Appendix A). These conditions are difficult to isolate using the maximum 

angle (Chu and Fan, 2011) and threshold methods. In this paper, the AMLD’s definition does not assume that the surface 220 

mixed layer is fully mixed with a ∆𝜌 close to zero for the whole portion of the water column, and it identifies AMLD 

regardless any a priori threshold. It also picks up the shallowest and deepest limits of the pycnocline by excluding middle 

breaks of the pycnocline, allowing the identification of unconventional density vertical distribution. Instead, here, the 
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definition of AMLD and BMLD are based on common conventions: small and similar variations in the density gradient 

within the mixed layer, above and below the pycnocline; the pycnocline is enclosed by mixed portions of the water column 225 

above and/or below it exhibiting a significant variation of the density gradient; the depth with the largest density is 

pinpointed independently from a fixed gradient (Chu and Fan, 2019, 2011; Holte and Talley, 2009). 

AMLD and BMLD have been identified developing an algorithm based on Chu and Fan (2011) framework to produce a 

method able to cope with various density profiles exhibiting a pycnocline (examples in Fig. A1 in Appendix A). The 

algorithm’s sequence identifies the depth with the largest density gradient between a mixed and a stratified layer using i) 230 

an adaptation of the maximum angle method (Chu and Fan, 2011) and ii) a cluster analysis on the density gradient (∆𝜌𝑧 =

 |𝜌𝑧 − 𝜌𝑧+1|) (diagram of the algorithm in Fig. 3a). The method is designed to work with equal, high-resolution, intervals 

of density values (z) in the profiles. In order to distinguish AMLD from BMLD, their selection is achieved by splitting 

the observations throughout the profile into two distinct groups, Split1 and Split2 (Fig. 3b and Fig. 3c), each one 

respectively used to identify AMLD and BMLD. Split1 includes the density values within the first observation close to 235 

the surface (z1) and two measurement intervals δ (here 1 m) above BMLD (zBMLD – 2δ), while Split2 extends from 2δ 

above the depth halfway through the 𝜌 range (0.5Δ𝜌 = ((𝜌max – 𝜌min)/2) – 2) up to the depth at which the total number of 

points from the surface to the bottom amounts up to 90% of the entire profile (z0.9Δρ = 90% of 𝑧1
𝑛 ). Since Split1 is based 

on BMLD, the algorithm identifies AMLD after BMLD. 

For all depths between z1 and z0.9Δρ, the angle φ has been measured at 𝑧(𝑥, 𝑦) (where x is the density and y is depth) 240 

between two vectors (V1, V2) fitting a linear regression (𝑦 ~ 𝑥) each. The two vectors have been calculated using 2δ 

before and after each observation (z) (V1 = from [z – 2] to z, and V2 = from z to [z + 2]) (Fig. 3b and Fig. 3c). Although 

Chu and Fan (2011) suggested to measure the tangent of the angle between V1 and V2 (φ), we encountered some issues 

identifying BMLD in those profiles that decreased in density below the BMLD (Fig. A1d, Appendix A). Therefore, the 

algorithm has been improved by calculating the angle φ. Since the slope (or angular coefficient, 𝛽) of a linear regression 245 

is the tangent of the angle between the line and the x-axis, the angle φ was obtained from two angles extracted from the 

coefficients measured by V1 and V2 according to the sign of 𝛽: i) positive 𝛽 (see example in Fig. 3d, angle 𝜏 and the 

orange vector) refers to the angle between the vector and the horizontal plane with 𝑦 equal to the intercept (α), or ii) 

negative 𝛽 (see example in Fig. 3d, angle 𝜔 and the blue vector) refers to the angle between the vector and the vertical 

plane with 𝑥 = 0. The angle φ at each observation (φ𝑧) is measured by summing up, or subtracting, the angles derived 250 

from the coefficients, 𝛽1and 𝛽2 for V1 and V2, according to their partial contribution to φ, which can be summarized 

under four different conditions:  

φ𝑧  =

{
 
 

 
 

atan(|𝛽1|) + atan(|𝛽2|) , 𝛽1 > 0 𝑎𝑛𝑑 𝛽2 > 0  

atan(|𝛽2|) − (
𝜋

2
− atan(|𝛽1|)) , 𝛽1 > 0 𝑎𝑛𝑑 𝛽2 < 0

atan(|𝛽1|) +  (
𝜋

2
− atan(|𝛽2|)) , 𝛽1 < 0 𝑎𝑛𝑑 𝛽2 > 0

|atan(|𝛽1|) − atan(|𝛽2|)| , 𝛽1 < 0 𝑎𝑛𝑑 𝛽2 < 0

        (1) 

where atan() refers to the arctangent of the coefficients 𝛽1and 𝛽2.   

Up to this stage, the algorithm selects AMLD and BMLD on the adapted maximum angle method (Chu and Fan, 2011). 255 

However, the exclusive use of the maximum angle method would have biased the selection due to local variation and 

instability conditions of the water column (Fig. A1b, c, e, f in Appendix A). Therefore, a K-Mean cluster analysis (Lloyd, 

1982) was adopted in the algorithm to improve the selection of the pycnocline limits by adding a further step of selection 

on the 3 and 5 largest φ for AMLD and BMLD, respectively. Since the transition from surface mixing layer to the 

https://doi.org/10.5194/egusphere-2022-140
Preprint. Discussion started: 14 April 2022
c© Author(s) 2022. CC BY 4.0 License.



9 
 

pycnocline is sharper than that one from the pycnocline to the bottom mixing layer, the number of φ candidates is higher 260 

in BMLD than in AMLD selections. The cluster analysis classifies the density gradient at depth (∆𝜌𝑧 = |𝜌𝑧 − 𝜌𝑧+1|) 

into groups (see below), assuming that ∆𝜌𝑧  values within a mixed layer would belong to a unique cluster.  

AMLD’s selection is made amongst the 3 largest φ, and the first φ𝑧 amongst the descendent ordered candidates meeting 

the following conditions was assigned as AMLD: i) the observations (z) within the mixed water column belong to the 

same cluster classification (CC), the candidate φ𝑧 must have CCz = CCz+1 and CCz ≠ CCz1 (CC at surface z1), ii) and 265 

∆𝜌𝑧−1 <  ∆𝜌𝑧. In AMLD’s selection, the ∆𝜌𝑧  is grouped in two clusters since we would expect two main variations of Δ𝜌 

in Split1: a small gradient on the surface mixed section and a bigger one at the pycnocline due to stratification. The same 

approach has been adopted for BMLD’s identification amongst the 5 largest φ, although the inclusion of three clusters 

instead of two improved the performance of the algorithm since the region of the water column transiting from the 

pycnocline to the bottom mixed layer is smoother than in AMLDs (e.g. Fig. A1b in Appendix A). The first φ𝑧  amongst 270 

the descendent ordered candidates meeting the following conditions was selected as BMLD: i) CCz = CCz-1 and CCz ≠ 

CCz0.9Δρ (CC at the z=0.9Δρ), and ii) ∆𝜌𝑧 <  ∆𝜌𝑧−1. Adding the conditions controlling for a similar classification of ∆𝜌𝑧 at 

depths above AMLD and below BMLD resulted in decisive outcomes, correctly identifying the mixed layers within those 

density profiles having a pycnocline fractured in chunks with different or similar gradients. However, when the conditions 

associated with clustering were not found among the candidates φ, the algorithm was not necessary and therefore the 275 

simplest methods were adopted to select i) AMLD with a threshold gradient ∆𝜌z > 0.02 mg m-3, and ii) BMLD as the 

largest φ (Fig. 3a). The algorithm was developed in R v3.6.3 (R Core Team, 2018), and the K-mean density was calculated 

using the kmeans function using Lloyd (1982) algorithm (stats package). 
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Figure 3:  main steps of AMLD and BMLD selection: (a) diagram of the algorithms, where green arrows belongs to 280 

Split1 and purple arrows to Split2, text in blue is the portion of the algorithm relying on cluster analysis (K-mean), “F” 

and “T” are the results, false and true, of the conditions expressed in the rhombuses. The φ is measured for each 

observation (z), and the largest (3  for AMLD and 5 for BMLD) φ are considered as candidates of AMLD and BMLD. 

The candidates are descendent ordered (Rank 1 → 3 or Rank 1→ 5) and the first candidate meeting the other 

conditions will be identified as AMLD or BMLD. If any candidate meets the conditions, the original methods are used 285 

(threshold method > 0.02 and maximum angle φ). (b) and (c) are plots of the same density profile representing the 

attributes used in the algorithm: grey region includes the observations (black dots) used to identify AMLD and BMLD, 

which extends in (b) from the surface to two depths above BMLD (purple rhombus), and in (c) from two depths above 

the middle of the pycnocline (purple rhombus) to 0.9Δ𝜌. AMLD and BMLD are reported by a black star in (b) and (c) 

respectively. In (b) and (c), the vectors V1 (blue line) and V2 (red line) are drawn for each z (black star) and 𝜑𝑧 is 290 

reported. Plot (d) shows of one of the four conditions reported in Eq. (1) measuring φ: V1 (orange line) with a positive 

slope (𝛽1) and V2 (blue line) with a negative slope (𝛽2).   
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2.5 Evaluating the association between density layers and subsurface Chl-a 

The ecological relevance of each density layer (DL) was evaluated by comparing their coincidence with the depth of 

maximum Chl-a (DMC) (e.g. DMC = BMLD) and the predictability of DMC (𝑦) from each DL (𝑥). The coincidence and 295 

the prediction of DMCs from a density characteristic are important tools for understanding the processes driving 

subsurface concentrations and identifying a valuable proxy for modelling analyses or controlling uncertainty in net 

primary production estimates.  

In this study, we evaluated the coincidence of the DMC with eight investigated density layers (AMLD0.01, AMLD0.02, 

AMLD, BMLD, HPD0.01-BMLD, HPD0.02-BMLD, HPDAMLD-BMLD, and Max N2, Fig. 2, described in Sect. 2.3 and 2.4) using 300 

Spearman’s rank correlation coefficient (𝜌𝑆) and a Major Axis (MA) line fitting, and the prediction of DMC from DL by 

performing a linear regression model (LM). The Spearman’s coefficient (Eq. (2) in Table 2) assesses a monotonic linear 

relationship with values ranging between -1 and +1, which refer to a perfect negative or positive correlation between two 

variables. Besides the strength of the linear relationship defined by 𝜌𝑆, we focused on evaluating the linear relationship 

between DMC and each DL using 3 different linear models 𝑦 = 𝛼 +  𝛽𝑥: 1) alpha and beta estimated by linear regression 305 

(Eq. (4) in Table 2); 2) alpha and beta estimated by major axis line fitting; and 3) the one-to-one line with alpha and beta 

fixed at 0 and 1 respectively (Eq. (4) in Table 2). The MA is largely used to investigate how one variable scales against 

another by accounting for errors from both directions (𝑥 and 𝑦) and measuring the residuals perpendicular to the line 

(details in the review Warton et al., 2006). Therefore, the aim of MA is not to predict the 𝑦-variable, however evaluating 

the proximity of the coefficients of the estimated MA line (𝛼 and 𝛽) to the scenario in which DL equals DMC. The 310 

coincidence of each DL and DMC was summarized by reporting the 𝛼 and 𝛽 MA coefficients, which are here 

hypothesized to reflect the one-to-one line (intercept ~ 0, slope ~ 1) if the DMC is aligned with the DL in question. 

Since the identification of a proxy for subsurface Chl-a represents a useful tool for correctly assessing the abundance and 

the variations of primary production, we investigated the power of prediction of DMC from each DL by measuring the r-

squared (R2) from i) an ordinary least square to estimate parameters from the observations in a linear regression (Eq. (3) 315 

in Table 2), and ii) the one-to-one linear regression (which has been forced with the intercept through the origin and a 

slope equal to 1, Eq. (4) in Table 2). The formulae used to calculate the coefficient of determination R2 for the one-to-one 

(𝑅0
2) and empirical (𝑅𝑒𝑚

2 ) LMs have been summarized in Eq. (3) and  Eq. (4) (Table 2).  

 

Table 2: Formulae for estimating the bivariate line-fitting. Spearman’s rank correlation coefficient (𝜌𝑆), coefficient of 320 

determination R2 for testing the one-to-one linear regression (𝑅0
2) (e.g. DMC ~ BMLD) and the empirical linear 

regression (𝑅𝑒𝑚
2 ). 

 Formula 
 

Purpose 

𝜌𝑆 
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
 

(2) 

Estimate the strength of the relationship between 𝑥 

and 𝑦 

𝑅𝑒𝑚
2  1 − 

𝑆𝑆𝑅𝐸𝑆
𝑆𝑆𝑇𝑂𝑇

= 1 − 
 ∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

 ∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1

 
(3) 

Measure the variation in 𝑦 that is explained by 𝑥 in 

a LM 

𝑅0
2 1 − 

𝑆𝑆𝑅𝐸𝑆
𝑆𝑆𝑇𝑂𝑇

= 1 − 
 ∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛
𝑖=1

 ∑ (𝑦𝑖)
2𝑛

𝑖=1

 
(4) 

Measure the variation in 𝑦 that is explained by 𝑥 in 

a one-to-one LM 

https://doi.org/10.5194/egusphere-2022-140
Preprint. Discussion started: 14 April 2022
c© Author(s) 2022. CC BY 4.0 License.



12 
 

Notation: 𝜎𝑥𝑦 is the covariance of x and y, 𝜎𝑥 and 𝜎𝑦 are standard deviations, n is the number of observations of 𝑥 and 

𝑦, 𝑦𝑖  is 𝐷𝑀𝐶𝑖, 𝑦̅ is the average of DMCs, and 𝑥𝑖  is the density layers related to DMC in each regression (e.g. DMC 

~ BMLD). SSRES is the residual sum of squares, SSTOT is the total sum of squares. 325 

In the LM, 𝑅𝑒𝑚
2  was calculated using the typical formula with the residual sum of squares (𝑆𝑆𝑅𝐸𝑆) as the square of the 

difference of 𝑦 and 𝑦̂ (estimated 𝑦 from the model) (Eq. (3) in Table 2). In the one-to-one LM, the 𝑆𝑆𝑅𝐸𝑆 in 𝑅0
2 was 

adapted by replacing 𝑦̂ with 𝑥 (Eq. (4) in Table 2), since the values of 𝑥 and 𝑦 are assumed to be equal in the one-to-one 

line regression and the difference between them should be zero. The two R2 differ also for the denominator 𝑆𝑆𝑇𝑂𝑇 , which 

is the sum of squares about the average of the explanatory variable in 𝑅𝑒𝑚
2  and the sum of squares of the DMC values 330 

since in 𝑅0
2 the value of DMC and DL equals.   

Since the 𝑆𝑆𝑇𝑂𝑇  adopted in the two formulae is different, the proportion of explained DMCs’ variance by each DL can be 

compared only within each linear regression rather than across the one-to-one and empirical regressions. Therefore, the 

power of prediction among DLs was discussed in within each type of LM. 

3. Results  335 

The presented algorithm identifying for AMLD and BMLD was applied to the 1273 profiles exhibiting a pycnocline (see 

Sect. 3.1), whose associations with DMCs (and with the other density layers – AMLD0.01, AMLD0.02, HPD0.01-BMLD, 

HPD0.02-BMLD, HPDAMLD-BMLD, and Max N2) are described for the whole dataset (see Sect. 3.2) and for each Chl-a vertical 

distribution (see Sect. 3.3).  

3.1 Identification of AMLD and BMLD   340 

The above mixed layer depth (AMLD) and the below mixed layer depth (BMLD) were identified by merging existing 

methods into an algorithm able to process density profiles with a 1 m sampling resolution. The algorithm was applied to 

the 1273 profiles exhibiting a pycnocline with heterogeneous vertical distributions, e.g. having a small re-stratification at 

the surface followed by a mixed layer before the pycnocline, or a pycnocline fractured in sections (examples of density 

profiles in Fig. A1, Appendix A).  345 

Here, the identifications of AMLD and BMLD did not assume that the mixed layer has a density gradient (∆𝜌) close to 

zero (e.g. threshold methods). Instead, the occurrence of a layer (the pycnocline) having ∆𝜌 at any observation z (∆𝜌𝑧 =

 |𝜌𝑧 − 𝜌𝑧+1|) pointedly different from that within the above and below (mixed) layers, is assumed. Therefore, the 

algorithm pinpoints the transition from the mixed layers to the pycnocline based on similar variations in ∆𝜌 within the 

mixed layer and within the pycnocline. As Fig. 2 shows, the algorithm was created to identify i) AMLD as the depth 350 

between a surface mixed layer having ∆𝜌 similar among observations and a layer (pycnocline) exhibiting an increasing 

∆𝜌𝑧 after AMLD, and ii) BMLD as the depth at which ∆𝜌𝑧 is smaller than at the pycnocline and consistently similar 

among observations up to the seabed. This identification does not consider the pycnocline as a layer with a constant ∆𝜌 

throughout its whole extension, since the pycnocline can include a small mixed layer (Fig. A1a, e, f in Appendix A) or 

presents different density gradients (stratified layers) within it (Fig. A1b and c in Appendix A). Therefore, the AMLD 355 

represents the last depths up to which the ∆𝜌 is consistently small from the surface to the pycnocline, while the BMLD is 

the first depth after a layer with large ∆𝜌 from which the density gradient is consistently small down to the seabed (or the 

deepest observation). In the algorithm, the similarity amongst ∆𝜌𝑧 was measured using a cluster analysis (see Sect. 2.4), 

which defines the main conditions controlling the selection of AMLD and BMLD by hypothesising that the mixed layer 

(up to AMLD or from BMLD) must have density gradients belonging to the same cluster. However, in specific conditions 360 
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the algorithm failed to correctly identify AMLD and BMLD and classified the two limits of the pycnocline within it (Fig. 

A1, Appendix A). The selection was considered to have failed when the AMLD and BMLD were selected ≥ 2 m (2 

observations) above or below the mixed layer depth. Major errors in identifying AMLD (6.76% of the profiles) and 

BMLD (4.32%) occurred in density profiles with a high number of observations within the transition from the mixed 

layer to the pycnocline, where φ𝑧 was similar amongst several observations and the cluster analysis was identifying the 365 

gradients close to the end of the pycnocline as belonging to the mixed layer (e.g. Fig. A1 a-c, Appendix A). The number 

of candidates appeared to be sensitive to the sampling frequency and the thickness of the transition regions (AMLD-

pycnocline, pycnocline-BMLD). Therefore, it is important to highlight the sensitivity of this method to the rate of change 

of the gradients at AMLD and BMLD (a large rate of change is preferred), and the sampling frequency at the transition 

between the pycnocline and the above and below mixed layers. The algorithm did not correctly identify AMLD in profiles 370 

without a surface mixed layer, and a shallow pycnoclines that comprised two different gradients (Fig. A1c). In this case, 

the cluster analysis split ∆𝜌 into two groups, although they belong to the same pycnocline. Other errors were related to 

profiles having a pycnocline split into two by a small mixed layer within a depth range > 4 m (4 observations) (Fig. A1e). 

Overall, the identification of BMLD performed better than AMLD’s, although it could not deal with profiles having less 

than 4 observations throughout the pycnocline (in this study thickness of the pycnocline < 3 m). This condition occurred 375 

due to the location of the Split2 (which is necessary to distinguish BMLD’s from AMLD’s selection) i) at depths above 

AMLD (misidentifying AMLD as BMLD) or ii) too close to BMLD (missing enough observations to fit properly V1). 

The algorithm always correctly selected BMLD in profiles that have the lowest densities below the BMLD (Fig. A1d). 

3.2 DMC association with different characteristic of the density profile 

The depth of maximum Chl-a (DMC) was compared to the location of eight features of the density profiles (DLs described 380 

in Sect. 2.3 and 2.4, Fig. 2) that are summarised in surface mixed layer depth (AMLD0.01, AMLD0.02, AMLD), bottom 

mixed layer depth  (BMLD), the centre of the pycnocline (HPD0.01-BMLD, HPD0.02-BMLD, HPDAMLD-BMLD) and the depth of 

maximum buoyancy frequency squared (Max N2) to evaluate i) the strength of a positive linear relationship between each 

DL and DMC, and ii) the power of prediction of DMC by each DL.  

All the methods classifying the surface mixed layer (AMLD0.01, AMLD0.02 and AMLD) showed the location of these 385 

density layers to generally be shallower than DMCs (Fig. 4 a-c, Table 3) with a rare coincidence of their vertical 

distribution (from 0.39% to 1.73% of the profiles, Table 3). In particular, the two thresholds used to identify AMLD (0.01 

and 0.02) exhibited the lowest Spearman correlation amongst all DLs, with AMLD0.01 having almost a zero correlation to 

DMCs (𝜌𝑆 = -0.01) and a null explanation of the DMC’s variability in the empirical linear regression (𝑅𝑒𝑚
2  = 0.00). The 

Major Axis analysis identified intercept and slope values in AMLD0.01 and AMLD0.02 almost perpendicular to the 𝑦-390 

variable due to the strong presence of DMCs in deep waters. Although a clear subsurface aggregation of max Chl-a occurs 

below the surface mixed layer (Fig. 4c, the AMLD measured by the algorithm (Sect. 2.4) showed a better correlation with 

DMC than AMLD0.01 and AMLD0.02, with a positive linear relationship between the two variables and a greater explained 

variance of DMC by the one-to-one and empirical linear regressions (Table 3).  

Max N2 is the density layer performing least well after AMLDs in predicting DMCs, although it showed the highest 395 

percentage of coincidence with DMCs (13.51% of the profiles, Table 2). Similar to AMLDs, DMCs have been recorded 

in 64.96% of the profiles at layers deeper than Max N2, indicating that max Chl-a area located in waters below surface 

mixing, at stratified regions within the pycnocline. Overall, the centre of the pycnocline (HPDs) distributed close to 

DMCs, with HPDAMLD-BMLD exhibiting the highest performance: the highest correlation to DMCs (𝜌𝑆 = 0.56), and the 

highest explained DMC’s variance from the one-to-one (𝑅0
2 = 0.90) and empirical (𝑅𝑒𝑚

2  = 0.31) LMs (Table 3). The 400 
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location of DMCs is highly related to HPDAMLD-BMLD, although only 4.63% of the profiles presented DMCs and HPDAMLD-

BMLD at the same depth (Table 3). Many profiles exhibited DMC deeper than HPDAMLD-BMLD (78.69%), of which 81.53% 

distributed DMCs above BMLD (hence, between HPDAMLD-BMLD and BMLD). 

The below mixed layer depth, BMLD, exhibited a reverse condition compared to the other density layers by encompassing 

78.32% of DMCs in waters above it (Table 2). BMLDs is the second variable after HPDAMLD-BMLD  with the highest 405 

correlation to DMCs (𝜌𝑆 = 0.55), it is distributed at the same depth of DMCs in 7.86% of the profiles and linearly predicted 

the location of maxima Chl-a in both one-to-one and empirical linear regressions (Table 2). BMLD exhibited MA 

coefficients (𝛼 = 0.60 and 𝛽 = 0.82) close to the hypothesized one-to-one fitting-line (𝛼 = 0 and 𝛽 = 1), indicating a good 

approximation of DMCs at BMLD. 

The overall distribution of DMCs is discernible mainly (> 95.84% of profiles) below the surface mixed layers (AMLDs’ 410 

indicators), within the deepest half of the pycnocline (between HPDAMLD-BMLD and BMLD) and it is bounded for 78.32% 

of the observations above the BMLD. However, although DMCs generally reflect the region with the highest 

concentration of Chl-a throughout the water column, the vertical concentration of phytoplankton can vary in the proximity 

of DMCs and accumulate mainly above or below it (Fig. 4). The ecological relevance of the density layers has therefore 

been investigated in comparison with different Chl-a profile shapes (Fig. 5). 415 
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Figure 4: Scatterplots of DMC and the eight DLs (a-h). The lines refer to the one-to-one linear regression (LM) (solid 

black), the Major Axis analysis (MA) (solid red), the empirical LM measured from the observations (DMC ~ 𝐷𝐿) (dot-

dashed blue). 420 

Table 3: Statistical parameters and profiles’ percentages having DMCs above (>), at the same depth (=), or below (<) 

each DL. 

DL 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL  DMC < DL  

AMLD0.01 - 0.01 543.35 -124.26 0.40 0.00 99.53 0.39 0.08 

AMLD0.02 0.08 -43.72 11.35 0.47 0.01 99.45 0.31 0.24 

AMLD 0.41 4.01 1.42 0.69 0.17 95.84 1.73 2.44 

HPD0.01-BMLD 0.52 -12.81 2.52 0.86 0.27 90.18 1.81 8.01 

HPD0.02-BMLD 0.52 -10.20 2.19 0.87 0.27 86.41 3.77 9.82 

 HPDAMLD-BMLD 0.56 1.31 1.28 0.90 0.31 74.86 4.63 20.50 

BMLD 0.55 0.60 0.82 0.87 0.31 13.83 7.86 78.32 
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Max N2 0.45 7.06 0.63 0.84 0.20 64.96 13.51 21.52 

 

3.3 Chl-a vertical distribution in relation to density layers 

Since hydrodynamic and biological conditions shape Chl-a differently throughout the water column through processes 425 

such as resuspension, passive drift, and mortality (i.e. zooplankton grazing in stratified and stable waters), Chl-a can have 

very different vertically distributions in relation to DMC values (Fig. 5).  

 

Figure 5: Example vertical distribution of Chl-a (green solid line) and density (black solid line). The horizontal lines 

indicate BMLD (blue solid), AMLD (blue dotted), and DMC (yellow dashed). 430 

The depth-integrated Chl-a was standardized (“standardized depth-integrated Chl-a”) by the number of 1 m observations 

above and below four DLs (AMLD, HPDAMLD-BMLD, BMLD and Max N2) and values were compared (Table 4). AMLD 

and HPDAMLD-BMLD were selected amongst the density layers indicating the surface mixed layer and the centre of 

pycnoclines due to their better correlation to DMC (see Sect. 3.2). The amount of Chl-a (mg) at each meter depth above 

and below the four density layers is reported in Fig. A2 (Appendix A). 435 

Following the results in Sect. 3.2, a large portion of Chl-a was measured at depths below AMLD, HPDAMLD-BMLD and 

Max N2 (Table 4), where DMCs also occurred. HPDAMLD-BMLD and Max N2 delimit almost three times the amount of Chl-

a at depths included from these vertical locations to the seabed as compared to the concentrations at the surface. A reverse 

condition is exhibited by Chl-a distributing above and below BMLDs: the standardized depth-integrated Chl-a is higher 

above than below BMLDs, although the amount of phytoplankton in the deepest layers is still comparable (the difference 440 

between surface-BMLD and BMLD-seabed is 42.80 mg m-1) (Table 4) (Fig. A2 in Appendix A shows the full distribution 

of Chl-a values at the 1 m sampling resolution).  

It is therefore sensible to infer the distribution of DMCs, and the largest portion of phytoplankton at depths enclosed 

within the stratified region (AMLD – BMLD), to be mainly in the second half of the pycnocline (HPDAMLD-BMLD – 
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BMLD). At the same time, a reasonable amount of Chl-a distributes below the pycnocline (BMLD), especially in SCM-445 

HCL and HCL shapes (Fig. 5 and 6). 

Table 4: Values of depth-integrated Chl-a (mg) standardized by its range of vertical distribution (m) (Total Chl-a 

biomass (mg)/depths (m)) above and below the four density layers. These values are also reported in Fig. A2 (Appendix 

A). 

DL Standardized depth-integrated 

Chl-a above DL (mg m-1) 

Standardized depth-integrated 

Chl-a below DL (mg m-1) 

AMLD 172.97 971.12 

HPDAMLD-BMLD 366.07 859.27 

BMLD 615.92 658.72 

Max N2 372.90 848.14 

 450 

 

Figure 6: Bar plot of the median percentage of Chl-a above (light grey) and below (black) BMLD for each Chl-a shape. 

Grey bars refer to standard error. 

3.3.1 DLs associated with Chl-a shapes, with a focus on BMLD 

Since BMLD exhibited the clearest pattern in defining the vertical distribution of Chl-a, further investigations have been 455 

focused on understanding the relationship between BMLD and Chl-a. The percentage of depth-integrated Chl-a above 

and below BMLD was measured for each profile and the median values are reported in Fig. 6. HCL and SCM-HCL 

shapes exhibited a high concentration of Chl-a at depths below BMLD, while SCM-HCU, Narrow-SCM, Wide-SCM and 

HCU are characterized by large concentrations between the sea surface and BMLD.  

A distinct pattern of deep Chl-a is visible in HCL shapes, where 77.24% of the total Chl-a was recorded below BMLDs 460 

(Fig. 6), and 87.14% of the profiles (n=70) reported DMCs in deep mixed waters (Table 5). HCL shape were significantly 

recorded at shallow bathymetry (≤ 63.15 m) (Wilcoxon test on bathymetry values at HCL profiles and all the other 
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profiles, W = 70534, p < 0.00) and exhibited an exceptionally high concentration of Chl-a at DMCs amongst all the other 

profiles (Wilcoxon test, W = 57303, p < 0.00) (Fig. A4b in Appendix A). HCL shapes exhibited a high correlation to 

BMLD than to the other density layers (Table 5, Tables A1-A7 in Appendix A), although the coincidence of DMC with 465 

BMLD occurred only in 1.43% of the profiles. BMLD exhibited a better performance amongst the other density layers in 

predicting DMCs from both one-to-one and empirical linear regressions. The MA analysis reported slope values < 1 in 

all the shapes except HCL, which has the highest β coefficient and the most negative intercept (Fig. 7 and Table 5). 

The SCM-HCL exhibits, with HCL shape, the greatest linear relationship between DMC and BMLD, showing the highest 

coincidence of BMLDs and DMCs (10.86% of 405 profiles, Table 5). Amongst all the investigated density layers, DMCs 470 

in SCM-HCL locate at depths very close to the base of the pycnocline (Fig. 7 and Table 5) although a large portion of the 

depth-integrated Chl-a (64.17%) occurred between BMLD and the seabed (Fig. 6). BMLD shows the best performing 

empirical and one-to-one linear regressions amongst all the Chl-a shapes (Table 5). 

The absence of a solid pattern in Wide-SCM shape reflects its extensive range of depth at which Chl-a distributes 

throughout the water column. In Wide-SCM shapes, HPDs’ indicators exhibited the highest correlation to DMCs amongst 475 

all the density layers (Tables A4-A6 in Appendix A), especially HPD0.1-BMLD and HPD0.2-BMLD (Fig. 7) (MA coefficients 

α and β close to 0 and 1 respectively), while the percentage of profiles with DMC equal to BMLD appeared higher (7.20%) 

than HPDs. The one-to-one and empirical linear regressions similarly report weaker predictability of DMCs from BMLD 

than the other Chl-a shapes.  

Since the Narrow-SCM shape typically describes the aggregation of Chl-a within a thin layer of the water column (3-10 480 

m), DMCs are identified between AMLD and BMLD in 83.91% of the profiles (n=404), with 55.82% of the total Chl-a 

between the sea surface and BMLD (Fig. 6). The MA analyses indicate BMLD and HPDAMLD-BMLD as the closest DLs to 

DMC amongst all the shapes (Fig. 7), whose α and β values measured almost 0 and 1 respectively (α = -0.26 and β = 0.87 

for BMLD, α = 0.22 and β = 1.13 for HPDAMLD-BMLD). All the DLs except for AMLD0.01 and AMLD0.02 efficiently 

predicted DMCs from both one-to-one and empirical linear regressions (Table A1-A7 in Appendix A).  485 

The SCM-HCU shape exhibits the highest percentage of depth-integrated Chl-a from the sea surface to BMLD (60.27%, 

Fig. 6), with 91.02% of the profiles (n =245) have the DMC above the base of the pycnocline. The shape showed the 

highest coincidence of DMCs at Max N2 (16.88% of the profiles) amongst all the density layers (Tables A7 in Appendix 

A), although the MA coefficients exhibit a low co-occurrence of DMC at Max N2 (Fig. 7). The MA analyses indicate 

BMLD and HPDAMLD-BMLD as the closest DLs to DMC (Fig. 7); however, the empirical and one-to-one linear regressions 490 

with BMLD and the surface mixing layers performed less well than HPDs’ indicators and Max N2. 

For the HCU shapes, the Spearman coefficient shows a low positive correlation between DMCs and DLs, except for the 

upper mixed layer indicators (AMLD, AMLD0.01 and AMLD0.02) that occurred at the same depth of DMCs for almost 

17% of the profiles (n=24, Table A1-A3 in Appendix A). Similarly, DMCs occur at the same depth of Max N2 for 16.67% 

of the profiles with a relatively high Spearman coefficient (𝜌𝑆 = 0.55), although Max N2 exhibits the lowest 𝑅0
2 (-0.11) 495 

and a low β from the Major Axis analysis (β = 0.34, Table A7 in Appendix A). The same condition refers to BMLD, 

which predicts only -0.04 of DMC’s variance (𝑅0
2) in HCU shapes and reports DMCs to be always shallower than BMLD 

(100%, Table 5). Amongst the DLs, BMLD is the density layer with the closest MA coefficients to the ideal co-occurrence 

of DMCs at BMLD (Fig. 7).  
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 500 

Figure 7: one plot for each Chl-a shape reporting the MA coefficients (α and β, values reported in Table 5 and Tables 

A1-A7 in the Appendix A) for six DLs (AMLD0.1 and AMLD0.2 were excluded due to their large values visible in Fig. 4 a-

c). In each plot, the dashed grey lines (α=0 and β=1) crosses where the DL is hypothesized to occur at the same depth 

of DMC. Top-right and bottom-left panels (as defined by the dashed grey lines) represent systematic over- and under-

estimation respectively, while top-left is under-estimation of the lower values, and bottom-right is over-estimation of the 505 

lower values.  

Table 5: Statistical parameters and profiles’ percentages having DMCs above (>), at the same depth (=), or below (<) 

the BMLD. 

DL = BMLD          

Chl-a shape n 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL  DMC < DL 

Wide-SCM 125 0.58 7.51 0.44 0.79 0.33 16.00 7.20 76.80 

SCM-HCL 405 0.78 1.16 0.81 0.94 0.61 13.33 10.86 75.80 

HCU 24 0.55 -2.73 0.65 -0.04 0.30 0.00 0.00 100 

Narrow-SCM 404 0.77 -0.26 0.87 0.95 0.59 8.42 7.67 83.91 

HCL 70 0.70 -4.36 1.73 0.83 0.49 87.14 1.43 11.43 

SCM-HCU 245 0.50 3.48 0.56 0.77 0.25 2.86 6.12 91.02 

 

4. Discussion 510 
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In stratified waters the vertical distribution of Chl-a is partially defined by physical factors, whose contribution to stabilize 

the stratification and mixing rate throughout the water column varies across hydrodynamic regions over time (Leeuwen 

et al., 2015). Stratification and mixing characterize the heterogeneous physical environment in shallow and shelf waters. 

The example here of the North Sea demonstrates the interplay of static (e.g. topography, shelf edge, position of river 

outflow) and dynamic variables (e.g. wind stress, tidal phases, amount of river outflow, convection or eddy activities), 515 

which go on to influence the whole food web at the local scale. The combination of static, dynamic and biological factors 

(e.g. grazing, Benoit-Bird et al., 2013) induces phytoplankton communities to adopt different vertical distributions that 

can be ecologically important at small scales (Scott et al., 2010; Sharples et al., 2013, < 1 km). Understanding the 

relationship between Chl-a and vertical density at a fine spatial scale is essential to assess the effects of variations in 

physical processes due to large scale factors (e.g. stratification strength or changes in mixing rate due to wind and tidal 520 

renewable energy extraction). In order to identify the vulnerable link of primary production with variations of the 

hydrodynamic regimes, key physical proxies consistently associated with the different conditions of subsurface Chl-a 

(shapes) need to be investigated. The differences in the association of DLs, Chl-a shapes and depth-integrated Chl-a with 

DLs are discussed in the context of previous studies in order to understand the underlying conditions and propose a 

valuable tool to help predict subsurface Chl-a at finer scales. 525 

4.1 Ecological relevance of AMLD in defining DMCs: valuable in HCU shape 

Oceanic sites exhibit phytoplankton blooms within the upper mixed layer (e.g. Behrenfeld, 2010; Costa et al., 2020; 

Somavilla et al., 2017) to coincide with AMLDs’ vertical fluctuations due to e.g. windstorm events deepening the 

pycnocline into nutrient-enriched waters (Detoni et al., 2015; Carranza et al., 2018; Höfer et al., 2019; Montes-Hugo et 

al., 2009). In this study, all the investigated surface mixed layers’ indicators (AMLD0.01, AMLD0.02 and AMLD) weakly 530 

predicted DMC, reporting low linear correlations for all Chl-a shapes (Tables A1-A3 in Appendix A). The algorithm used 

in this study has reported an overall high performance in predicting the location of DMCs in HCU shape, which exhibited 

the shallowest DMCs (on average 9.74 ± 6.66 m standard deviation). HCU shapes represent ephemeral surface blooms in 

shelf waters, whose DMCs resulted mainly at layers ≤ the upper mixed layer depths. According to literature (Carranza et 

al., 2018; Zhao et al., 2019a), HCU showed the highest correlation to the upper mixed layer depth by exhibiting the largest 535 

percentage of DMCs above: AMLD0.1 and AMLD0.2 in 4.17% of the profiles, and AMLD in 25%. The AMLD identified 

by the proposed algorithm tested as the best variable in predicting most of DMCs in the one-to-one (𝑅0
2 = 0.76) and 

empirical (𝑅𝑒𝑚
2  = 0.34) linear regressions, while BMLD accurately always defined the deepest boundary of DMCs in the 

observations (Table 4).  

Since AMLD has been largely considered as a central variable for understanding phytoplankton dynamics (Sverdrup, 540 

1953), it has been investigated in relation to climate change to infer possible significant changes in the amount, spatial 

distribution and phenology of oceanic primary production (Boyd et al., 2015; Montes-Hugo et al., 2009; Somavilla et al., 

2017; Prend et al., 2019; Richardson and Bendtsen, 2019; Schmidt et al., 2020). However, the effect of climate change 

on AMLD and primary production is still an unsolved question (Lozier et al., 2011; Somavilla et al., 2017). The unclear 

effects of climate change on AMLD and primary production might be related to i) the difficulties in measuring the amount 545 

of subsurface Chl-a and its little association to satellites’ observations at the sea surface (Baldry et al., 2020; Erickson et 

al., 2016; Lee et al., 2015), and ii) the exclusive investigation of the effects of surface mixing processes on primary 

production (e.g. temperature, wind-induced mixing) by neglecting deep processes that are responsible for the pycnocline’s 

stability (Dave and Lozier, 2015, 2013; Lozier et al., 2011; Somavilla et al., 2017). As described above, the AMLD is 

informative for surface concentrations (HCU shapes), but it may not be biologically relevant for subsurface Chl-a that are 550 
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maintained at the pycnocline by deep turbulent mixing. The need for a much more detailed understanding of the linkage 

between subsurface Chl-a, pycnocline characteristics and deep turbulent processes is therefore a key subject, especially 

in highly productive but spatially heterogeneous areas such as shelf waters and shallow seas. 

4.2 Association of subsurface Chl-a with DLs 

The observations in the FoF and Tay region with a wide variety of characteristics of shallow seas, confirmed the 555 

subsurface presence of maxima Chl-a between April and August, with DMCs distributing on average (± standard 

deviation) at depths (m) equal to 17.22 ± 4.95 in Wide-SCM, 15.08 ± 4.47 in SCM-HCL, 14.82 ± 3.29 in Narrow-SCM, 

22.69 ± 10.91 in HCL, and 15.17 ± 4.16 in SCM-HCU. A recent study in the German Bight described DMCs located 

mainly at the centre of the pycnocline and the overall amount of Chl-a at depths distinctly lower than the surface mixed 

layers (Zhao et al., 2019a). The vertical distribution of DMCs at BMLDs appeared to be correlated to the bathymetry by 560 

exhibiting DMCs closer to BMLDs at bathymetry comprised from, approximately, 40 to 70 m (in Narrow-SCM, SCM-

HCL and Wide-SCM shapes), DMCs deeper than BMLD mainly in shallow waters (in HCL shapes, generally < 60 m), 

and DMCs above deep BMLD towards deeper waters (in SCM-HCU and HCU shapes, generally from 30 to 100 m) (Fig. 

A5 A in Appendix A). Previous studies identified a similar pattern in shallow waters where DMCs were mainly recorded 

at or below the base of the pycnocline (here BMLD) (Barth et al., 1998; Durán-Campos et al., 2019; Holligan et al., 1984; 565 

Zhao et al., 2019a). The link between bathymetry and Chl-a shapes, and the association of DMC with BMLD become 

important in those regions where bathymetry plays an important role in defining the location of commercial interests such 

as in the FoF and Tay region, location of several offshore wind farms (www.marine.gov.scot). The installation feasibility 

will allow the deployment of wind turbines in water depths ranging from 41 to 58 m above the lowest astronomical tide 

(LAT) (www.marine.gov.scot), where reliable environmental impact assessment, able to estimate the indirect effects in a 570 

holistic way, are required.  

4.2.1 Stable Chl-a shapes  

Narrow- and Wide-SCM shapes can be considered as relatively stable vertical distribution of Chl-a since they occur 

during stable stratified conditions (Cullen, 2015; Carranza et al., 2018). DMCs at the pycnocline (between AMLD and 

BMLD) have been consistently recorded in Narrow-SCM profiles within a pycnocline’s width about 8.81 ± 3.83 m on 575 

average (± standard deviation) (Fig. A4c in Appendix A). The location of DMC at the pycnocline in Narrow-SCM is 

regulated over time by upward nutrient-enriched fluxes entering the pycnocline from deep waters (Pingree et al., 1982; 

Rosenberg et al., 1990). In the Skagerrak strait between Denmark and Norway, deep SCMLs were recorded at a nutricline 

(rate of change in nitrate and phosphate) located below the base of a shallow pycnocline (< 15 m) (Bjørnsen et al., 1993). 

A low number of Narrow-SCM profiles exhibited DMCs deeper than BMLDs (8.42%), while this condition (DMC > 580 

BMLD) was more evident in Wide-SCM profiles (16%) having a thicker and variable pycnocline (on average 12.76 ± 

6.85 m) than Narrow-SCM profiles. The higher variability in the location of DMCs and BMLDs in Wide-SCM (𝑅0
2 = 

0.79) than Narrow-SCM (𝑅0
2 = 0.95), and the extended distribution of Chl-a throughout the whole water column in Wide-

SCM might reflect a limited erosion of Chl-a by mixing and grazing above and below the pycnocline. Overall, the deep 

distribution of DMCs, and most of the depth-integrated Chl-a, in the proximity of the centre and the base of the pycnocline 585 

suggests the maintenance of subsurface Chl-a within shelf waters through the regulation of nutrient supply by deep 

physical processes. 

4.2.2 Transient Chl-a shapes 
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Besides the stable Narrow- and Wide-SCM shapes, the other profiles (HCL, HCU, SCM-HCU and -HCL) have been 

described in the literature as transient frames either from a stratified to a mixed water column or vice versa. Carranza et 590 

al. (2018) described two vertical distributions of Chl-a (from HCU to SCM-HCU) occurring from a mixed to stratified 

phase of the water column, indicating the ephemeral persistence of these shapes in the marine environment, eventually 

developing the typical (Narrow- or Wide-) SCM shapes. Although SCM-HCU and HCU profiles develop DMCs above 

AMLDs in Carranza et al. (2018), the observations in the FoF and Tay region reported DMCs deeper than AMLDs’ 

indicators in > 62.50% of HCU profiles and > 91.43% of SCM-HCU (Fig. 6). Similarly to SCM-HCU, SCM-HCL might 595 

reflect the transition from stratified to mixed conditions, where phytoplankton cells concentrated at SCMLs are re-

suspended and diluted in deep layers due to an increasing tidal current (Zhao et al., 2019a). Beside SCM-HCU and -HCL 

might reflect different transitions between mixing and stratified conditions, only BMLD appeared a consistent proxy in 

defining the limit above which the DMCs have developed and, hence, is further discussed.  

SCM-HCU shape 600 

In SCM-HCU profiles, the DMCs occurred at Max N2 at a larger percentage (15.10% of the profiles) than the other density 

indicators. The depth of Max N2 is a less turbulent region where the energy to exchange parcels in the vertical is maximum 

(Boehrer and Schultze, 2009), and it is frequently used to identify the upper mixed layer (e.g. Carvalho et al., 2017). The 

location of DMCs at Max N2 in SCM-HCU profiles might reflect the distribution of phytoplankton within a less turbulent 

region where nutrient particles, which have been resuspended by mixing, can persist for longer time periods. The mild 605 

turbulent layer at Max N2 would therefore represent a hot spot of nutrients reached by resuspended phytoplankton cells, 

while strong mixing processes still undergoing above and/or below it, or diluted gradients of phytoplankton and nutrients 

throughout the water column, would avoid the creation of highly productive subsurface patches. Although the depth of 

Max N2 resulted in SCM-HCU being more informative than BMLD, DMCs exhibited a clear pattern by distributing 

shallower than BMLDs in 91.02% of the profiles and representing the deepest limit up to which DMCs distributed. 610 

Overall, Max N2 exhibited higher percentages of coincidence with DMCs (13.51% of 1273 profiles) than other DLs (Table 

3), although the linear correlation (𝜌𝑆), the MA coefficients and the one-to-one linear regression 𝑅0
2 described a low 

association of DMCs with Max N2 compared to HPDs’ indicators and BMLD (Table 5 and Tables A4-A7 in Appendix 

A). However, the use of Max N2 in summertime shelf waters to infer the depth of subsurface Chl-a patches in a one-to-

one fitting-line (DMC = Max N2) may lead to underestimate the amount of Chl-a in the whole water column, as the 615 

amount of standardized depth-integrated Chl-a below Max N2 is almost three times higher than above it (Table 4 and Fig. 

A2 in Appendix A). 

SCM-HCL shape 

SCM-HCL exhibited a greater association of DMCs with BMLDs than HPDs’ indicators or Max N2, with the largest 

coincidence of DMC at BMLD (10.86% of the profiles) and α and β coefficients from the Major Axis analysis close to a 620 

one-to-one fitting-line (Table 5, Fig. 7). It was not the aim of this study to assess if the transient phase is taking place 

either from mixed to stratified waters or vice versa, although the closer proximity of DMCs to BMLDs than Max N2, and 

the higher percentage of DMCs below Max N2 (73.09% of the profiles against 13.33% DMCs below BMLD) might 

indicate the erosion of a stable pycnocline where DMCs previously developed (transition from a stratified to a partially 

mixed water column). In the German Bight, 76% of SCM-HCL profiles presented high Chl-a at the base of the SCMLs, 625 

suggesting a possible erosion of the subsurface layer from the bottom due to strong tidal currents (Zhao et al., 2019a). 

The physical factors developing SCM-HCL might not cause the mixing of the whole water column and, instead, sustain 

an indispensable upward flux of nutrients into the enduring pycnocline, where e.g. dinoflagellates are able to compete 
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successfully in slightly turbulent conditions (< 0.1 mm s-1) (Ross and Sharples, 2007). Therefore, the erosion as well as 

the resuspension of previously sinking phytoplankton cells and nutrients can maintain the proximity of DMCs at BMLDs. 630 

Although SCM-HCL appears to be a transient shape with a short-life (Zhao et al., 2019a), it has been widely encountered 

(n=405) during summer in the FoF and Tay region, and therefore its permanency might occur at a temporal scale (e.g. 

spring-neap cycle) that allows phytoplankton to counteract the dispersion of the gradients. Moreover, the large amount of 

diluted Chl-a in deep waters (64.17% of depth-integrated Chl-a below BMLD, Fig. 6) might be crucial in maintaining 

primary production at the subsurface over the summer, since deep mixing processes eroding and sustaining Chl-a at 635 

BMLD would contribute also to reducing the overlap between SCMLs and predators (Behrenfeld, 2010). 

4.2.3 HCL shape and BMLD in shallow waters  

The opposite condition is found in HCL profiles, where DMCs have been identified in deep layers below BMLD in 

87.14% profiles (Table 4). The large portion of deep Chl-a, which is typical in HCL shapes, is described in the literature 

as primary production trapped in deep waters by a surface layer with a low diffusivity (e.g. pycnocline) (Jones et al., 640 

1998; Zhao et al., 2019a). Besides the potential physical drivers inducing Chl-a below BMLD (77.24% of depth-integrated 

Chl-a is below BMLD, Fig. 6), deep Chl-a is probably accumulated due to the slowdown of the current at the seabed 

(Neill and Hashemi, 2018). In particular significantly more HCL profiles (results in Sect. 3.3.1) have been recorded in 

shallow waters (from 22.45 to 63.15 m, on average 30.77 ± 11.59 m, Fig. A5b in Appendix A) as well as in other studies 

(Jones et al., 1998; Huisman et al., 2002; Zhao et al., 2019a), where a compatible amount of light and suspended sediments 645 

can sustain phytoplankton growth throughout most of the water column (Huisman et al., 2002). Although sinking rates 

have been described as the main driver of Chl-a distribution below BMLD (Jones et al., 1998; Huisman et al., 2002; Zhao 

et al., 2019a), the density at DMCs showed a similar range (1021 – 1028 kg m-3) to the other Chl-a shapes exhibiting deep 

DMCs below BMLD (Wide-SCM, SCM-HCL) (Fig. A4a and Table A8 in Appendix A report no significant differences 

between these shapes), suggesting that hydrodynamic drivers (e.g. deep turbulent nutrient-enriched fluxes) might have 650 

more of an effect on Chl-a profiles than density on sinking rates. Another characteristic of the HCL shape is the 

exceptionally high concentration of Chl-a at DMCs than all the other profiles (results in Sect. 3.3.1, and Fig. A4b in 

Appendix A). It is evident that HCL profiles occurred at stratified conditions, probably when the tidal speed was slow 

enough to allow the stratification to persist (Zhao et al., 2019a) below a thin pycnocline (on average 8.82 ± 5.19 m, Fig. 

A4c in Appendix A) able to trap down a significantly large amount of Chl-a over shallow regions. Therefore, the 655 

provenance of high Chl-a at depth in shallow regions (≤ 63 m) might be due to the passive drift and accumulation by 

horizontal tidal currents in shallow waters, or the sinking combined with resuspension and active photosynthesis. Overall, 

high concentrations of Chl-a below the pycnocline represented a distinct pattern in shallow waters, revealing the 

sensitivity of these regions to further changes in the stratification strength or mixing at a small scale (< 1 km) of the water 

column due to manmade structures (e.g. renewable deployments). 660 

4.3 The role of BMLD in further climate change investigations  

Regions with large and deep phytoplankton concentrations are highly important for absorbing and sinking atmospheric 

carbon dioxide and represent a biological pump of carbon sequestration (Boyd et al., 2015). The correct estimation of the 

abundance of subsurface primary production is therefore highly important in investigating climate change implications in 

the marine environment. The exclusion of subsurface Chl-a in shelf waters is estimated to undervalue the total productivity 665 

of up to 10%-40% (Sharples et al., 2001). This amount of underestimation and lack of understanding of exact mechanisms 

for changes in vertical location of density and Chl-a would strongly affect the wider scale assessment of climate change 

impacts as well as  the finer scale of manmade structures on the biological functionality of a certain region. The location 
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of the BMLD was overall the best variable constantly informing about the locations of DMCs throughout the water 

column. However, we want to highlight that a minimum of 39% of depth-integrated Chl-a is found within waters below 670 

the BMLD and this represents a high proportion of potential primary production that needs to be considered. In terms of 

abundance of primary production, the Northeast Atlantic shelves exhibited a summertime reduction of Chl-a in the last 

60 years leading to significant impacts on the food web in the North Sea (Capuzzo et al., 2018; Schmidt et al., 2020). In 

particular, the intensified stratification caused an effective reduction in nutrient supply at the surface with the 

consequential starvation and change of phytoplankton communities (e.g. Bindoff et al., 2019; Boyd et al., 2015; Schmidt 675 

et al., 2020). The isolation of surface waters from deep nutrient-rich waters may explain the distribution of phytoplankton 

at the subsurface, especially in the proximity of BMLD, which represents the limits up to which the deep nutrient-enriched 

fluxes distribute and allows phytoplankton to grow in a region with low turbulence (Bopp et al., 2013; Boyd et al., 2015). 

Not only the stratification strengthening but also the vertical distribution of BMLD and the upward fluxes, up to the 

pycnocline may either redistribute food patches at major depths, together with the deepening of BMLD, and causing an 680 

overall reduction of primary production or community’s shift due to the reduced light at depth. 

Investigating the potential effects of climate change involves not only surface processes, but also deep systems at the 

large and local scales, especially where multiple local changes (i.e. wind turbine deployments changing levels of mixing) 

repeated over large spatial areas (i.e. the North Sea) are likely to have an effect at different scales (van der Molen et al., 

2014; De Dominicis et al., 2018). Long-term effects of variations in deep mixing processes appear essential to assess 685 

shelf seas at a regional scale, leading to identifying key indicators, or sensitive links, of subsurface highly productive 

patches at a fine scale. The physical processes delineating the vertical distribution of density therefore represented a 

valuable tool in identifying possible biases or underestimations of Chl-a contents in shelf waters.  

5. Conclusion 

Chl-a vertical distribution (here classified as shapes) gives important information about the state of development of the 690 

phytoplankton community and their reliance on nutrient gradients that are likely to be associated with mixed and stratified 

layers. The upper and deep mixing processes can have very different influences on the Chl-a vertical distribution, dictating 

the concentration at subsurface patches that can distribute close to, above, or below DMC.  

The association of phytoplankton with AMLD has been largely described at large spatial scales within oceanic habitats. 

This study shows there is a very weak linkage between AMLD and DMC at a very high resolution (vertical samples at 1 695 

m distances) compared to HPDs’ indicators or BMLD, which has led us to hypothesize that, at fine spatial scales, in 

shallow shelf seas, there is a stricter association of summertime subsurface patches of Chl-a with the bottom half of the 

pycnocline. Therefore bottom mixing processes (e.g. tidal cycles) may play a role in regulating summertime subsurface 

primary production in shelf waters. Considering the described associations of subsurface Chl-a with BMLD provided by 

this study, it is evident how this new level of understanding can play a role in the assessment of productivity, since the 700 

bottom mixing processes may be more (or equally) relevant than the surface process in determining a shift of primary 

production at a local (due to e.g. the increase of mixing downstream a wind turbine deployment) or large scales (e.g. due 

to climate change). This association therefore advocates the  investigation of the effect of anomaly-inducing processes 

occurring at and below the pycnocline (e.g. bottom sea temperature, bottom salinity, turbulence and physical processes 

at the BMLD), which are likely to influence primary production and the whole ecosystem dynamics within shelf seas 705 

(Trifonova et al., 2021). The  new understanding of mechanisms affecting primary production at fine scales may be very 

important to investigate as we are moving rapidly towards the deployment of thousands of wind turbine foundations and 

100s of GW of wind energy extraction from worldwide shallow seas (Gielen et al., 2019).  Hence, BMLD is proposed as 
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an ecological relevant variable for further oceanographic investigations in shelf waters, and the proposed approach is a 

valuable tool to extrapolate this variable from in situ vertical samples.  710 

Appendix A 

 

Figure A1: Examples of density profiles (grey line) (a-f). The black squares are the values at 1 m resolution. Red dots 

refer to BMLD, green dots to AMLD. Crosses refer to misidentified AMLD (in green) and BMLD (in red) that needed to 

be manually corrected.  715 
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Figure A2: Violin plot of the amount of Chl-a (mg) at each meter above and below the four density layers (AMLD, 

HPDAMLD-BMLD, BMLD and Max N2) from the whole dataset. The dot-dashed blue lines represent the depth-integrated 720 

Chl-a measured as the total amount of Chl-a (mg) divided by the number of depths (z) within each portion of the water 

column (meters above and meters below DLs) (values are reported in Table 2). 
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Figure A3:  Plots of DMCs against the eight investigated density layers, whose observations are coloured by Chl-a 

vertical shape. Coloured lines refer to the empirical linear regression (DMC ~ DL), while the black solid line is the 

one-to-one fitting-line (DMC = DL). 

 730 
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Figure A4: Boxplots of (a) density at DMCs, (b) Chl-a at DMCs, and (c) the thickness of pycnoclines (measured as the 

difference between AMLD and BMLD) for each Chl-a shape. 735 

 

Figure A5: (a) scatterplot of the residuals measured as the difference between DMC and BMLD (one-to-one fitting-line, 

DMC=BMLD), against the bathymetry at which each profile was sampled. (b) the solid black line reports a 

Standardized Major Axis analysis. Colours refer to Chl-a shape, whose ranges of bathymetry. 

 740 

Tables A1-A7: Statistical parameters and percentages of the observations categorized by Chl-a vertical shape  exhibiting 

DMCs above (>), at the same depth (=), or below (<) the AMLD0.01 (Table A1),  AMLD0.02 (Table A2), AMLD (Table 

A3), HPD0.01-BMLD (Table A4), HPD0.02-BMLD (Table A5), HPDAMLD-BMLD (Table A6), and Max N2 (Table A7). 

Table A1 

DL = AMLD0.01 
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Chl-a shape 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL DMC < DL 

Wide-SCM 0.00 21339.29 -5546.12 0.35 0.00 100 0.00 0.00 

SCM-HCL 0.07 -83.35 24.55 0.41 0.00 100 0.00 0.00 

HCU -0.18 68.85 -23.09 0.27 0.03 79.17 16.67 4.17 

Narrow-SCM 0.02 -127.00 28.14 0.51 0.00 100 0.00 0.00 

HCL 0.02 -436.78 129.32 0.22 0.00 100 0.00 0.00 

SCM-HCU -0.07 68.89 -13.77 0.38 0.01 99.59 0.41 0.00 
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Table A2 

DL = AMLD0.02 

Chl-a shape 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL DMC < DL 

Wide-SCM 0.08 -32.36 11.67 0.38 0.01 100 0.00 0.00 

SCM-HCL 0.24 -0.27 3.12 0.49 0.06 100 0.00 0.00 

HCU -0.18 69.85 -22.75 0.28 0.03 79.17 16.67 4.17 

Narrow-SCM 0.09 6.51 1.30 0.61 0.01 100 0.00 0.00 

HCL 0.13 -49.80 16.96 0.27 0.02 100 0.00 0.00 

SCM-HCU 0.00 776.92 -158.95 0.45 0.00 99.18 0.00 0.82 

 

Table A3 

DL = AMLD  

Chl-a shape 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL DMC < DL 

Wide-SCM 0.48 10.88 0.69 0.70 0.23 91.20 1.60 7.20 

SCM-HCL 0.51 7.76 1.04 0.66 0.26 98.52 0.49 0.99 

HCU 0.58 -3.77 1.73 0.76 0.34 62.50 12.50 25.00 

Narrow-SCM 0.41 7.40 0.88 0.77 0.17 98.76 1.24 0.00 

HCL 0.55 -4.23 3.97 0.47 0.31 98.57 0.00 1.43 

SCM-HCU 0.51 8.00 0.79 0.77 0.26 91.43 4.08 4.49 

 

Table A4 750 

DL = HPDAMLD 0.01-BMLD 

Chl-a shape 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL DMC < DL 

Wide-SCM 0.60 -1.68 1.46 0.89 0.36 88.80 1.60 9.60 

SCM-HCL 0.75 -4.06 1.81 0.88 0.57 95.31 1.98 2.72 

HCU 0.52 -14.66 2.24 0.76 0.27 41.67 4.17 54.17 

Narrow-SCM 0.64 -5.18 1.79 0.91 0.41 94.31 1.49 4.21 

HCL 0.65 -14.46 3.88 0.61 0.43 97.14 0.00 2.86 

SCM-HCU 0.43 -9.78 2.03 0.90 0.19 78.37 2.45 19.18 

 

Table A5 

DL = HPDAMLD 0.02-BMLD 
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Chl-a shape 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL DMC < DL 

Wide-SCM 0.61 -0.61 1.36 0.90 0.37 87.20 2.40 10.40 

SCM-HCL 0.74 -1.55 1.51 0.90 0.56 94.07 2.72 3.21 

HCU 0.52 -14.68 2.23 0.76 0.27 41.67 4.17 54.17 

Narrow-SCM 0.61 -3.03 1.51 0.93 0.37 86.88 5.45 7.67 

HCL 0.67 -12.50 3.54 0.63 0.45 97.14 0.00 2.86 

SCM-HCU 0.43 -7.01 1.74 0.91 0.18 73.88 4.49 21.63 

 

Table A6 

DL = HPDAMLD-BMLD 

Chl-a shape 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL DMC < DL 

Wide-SCM 0.60 6.65 0.68 0.91 0.36 66.40 1.60 32.00 

SCM-HCL 0.74 2.20 1.07 0.92 0.56 87.65 3.95 8.40 

HCU 0.62 -6.13 1.17 0.68 0.38 20.83 4.17 75.00 

Narrow-SCM 0.71 0.22 1.13 0.96 0.50 75.25 5.94 18.81 

HCL 0.69 -5.74 2.54 0.69 0.48 95.71 0.00 4.29 

SCM-HCU 0.59 1.68 0.91 0.94 0.35 56.73 6.53 36.73 
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Table A7 

DL = Max N2 

Chl-a shape 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DMC > DL  DMC = DL DMC < DL 

Wide-SCM 0.51 10.95 0.37 0.83 0.26 56.00 5.60 38.40 

SCM-HCL 0.63 7.57 0.61 0.88 0.39 73.09 13.83 13.09 

HCU 0.55 4.42 0.34 -0.11 0.31 16.67 16.67 66.67 

Narrow-SCM 0.55 7.82 0.52 0.92 0.30 64.85 16.58 18.56 

HCL 0.56 -5.84 2.82 0.62 0.31 95.71 1.43 2.86 

SCM-HCU 0.55 7.52 0.52 0.89 0.30 52.24 15.10 32.65 

 

Table A8: Wilcoxon test between the density at DMCs in HCL shape and all the other Chl-a shapes. In bold the Chl-a 

shapes having density at DMCs significantly different from HCL profiles. 

Shape vs HCL W p 

Wide-SCM 4375 0.289 

SCM-HCL 15624 0.062 

HCU 1075 0.126 

Narrow-SCM 19592 0.023 

SCM-HCU 11824 0.000 
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